Falling film vacuum evaporators

Introduction to technology

Mechanical vapor compression and falling film evaporators are suitable for volumes of up to 4,000 L/h per modular unit.

These evaporators produce practically no foam, due to their high-performance separator. The internal division in the hot and cold zones reduces wear in the control and regulation equipment. The cleaning system integrated into the equipment is automatic, and is thus continuously available. All important process parameters are displayed on a touch screen. Its design, with large doors on both sides, facilitates its use and maintenance.

How does a falling film evaporator work

Falling film vacuum evaporation is a very efficient technology for obtaining high quality water from an effluent with a high contaminant concentration. Falling film evaporators use thermal energy; however, when operating under vacuum conditions, the boiling temperature is reduced so energy consumption is also reduced.

Vacuum evaporators can concentrate a waste effluent as many times as necessary, resulting in zero discharge if required. Its operation is simple and its efficiency is high. Evaporation under vacuum can treat effluents of a complex nature, which more conventional techniques cannot effectively treat.

Condorchem Envitech Offer

As falling film evaporator manufacturers, Condorchem Envitech’s falling film mechanical vapor compression vacuum evaporator range focuses on the ENVIDEST MVR FF series of equipment, with flow rates up to 4,000 L/h per modular unit.

Different models are available depending on their capacity:

The equipment has vertical type boilers in AISI 316-L with an integrated centrifugal separator, a pre-heat exchanger with counter flow plates to cool the distilled steam while at the same time preheating the incoming wastewater. They are equipped with a vacuum blower pump, a Root type vapor compressor and a double-ended centrifugal pump with closed cooling system to produce the forced circulation of the fluid to be treated.

The falling film system produces a layer of fluid which slides on the inner surface of the exchanger providing instant evaporation; it reduces fouling of the heat exchanger and eliminates foaming. In addition, the concentrate is discharged with the same pump.

Our evaporators

Advantages and Applications


  • Minimization of the waste volume to be managed
  • Significant reduction in waste management costs
  • Production of an excellent quality distillate
  • Possibility of implementation of a zero discharge system
  • Fulfillment of the current regulations on discharge of effluents
  • Reduction in greenhouse gas emissions when transporting the waste
  • Low maintenance and little need for supervision


  • Chemical industry: Reactor washing
  • Leachate at MSW landfills
  • Water treatment plant reject fractions in power plants
  • Metalworking and car parts industry: surface treatment baths, parts washers, finishing vibro water, compressor purges, water washed floors and lubro-refrigerant oil emulsions
  • Die casting metals and light alloys: e.g. demoulding and oil emulsions
  • Salt water and brines

Functioning/operation of technology

Falling film evaporator working: The operation of the mechanical vapor compression vacuum evaporators is based on the recovery of the condensation heat from the distillate as a source of heat to evaporate the feed.

In these systems, the process starts with the external energy supply to the evaporator to start the falling film evaporationevaporation process. The operation of the mechanical vapor compression vacuum evaporators is based on the recovery of the condensation heat from the distillate as a source of heat to evaporate the feed. The steam produced is extracted and compressed by a volumetric compressor with the intention of increasing its temperature. This superheated steam is then returned to the evaporator as a heating fluid. Once the cycle has begun, no more external heat input is required, as the mechanical compression of the steam provides enough heat to maintain the evaporation of the liquid. Upon passing through the exchanger of the evaporator itself, this compressed, and therefore superheated, vapor has two effects: (1) it heats the liquid to be evaporated and (2) it condenses, thereby reducing the need for a refrigeration fluid.

The main advantage of mechanical vapor compression vacuum evaporators lies in the fact that the energy consumption of the volumetric compressor is lower than the cost of producing steam for multi-effect evaporation systems. However, the volume to be evaporated must be high enough so that the saving generated compensates for the investment in the volumetric compressor.

Falling film mechanical vapor compression evaporators consist of a housing and tubes. The product circulates through the interior of the tubes and the steam through the housing, heating its outer walls.

The effluent enters at the top and slides uniformly through the tubes by gravity in the form of a thin layer which is heated by contact with the inner wall.

This equipment can also work with low temperature differences due to the high coefficients of thermal transfer obtained.

Falling film evaporator design

Envidest MVR FF