Secciones
- Definición
- Características del proceso
- Selectividad de la membrana
- Problemas específicos de ensuciamiento
- Aplicaciones generales
- Aplicaciones industriales
Definición
La ósmosis (O) y la ósmosis inversa (RO) son dos fenómenos que se producen de forma natural en el interior de los seres vivos.
Por ejemplo, mediante la ósmosis las células de nuestro organismo, que están envueltas por una membrana semipermeable, permiten el paso de nutrientes dentro y fuera de la célula, favoreciendo así tanto la incorporación de nutrientes necesarios para el metabolismo celular, como la expulsión de los deshechos del mismo.
En este artículo nos centraremos en el proceso de Ósmosis Inversa (RO), que de manera global consiste en generar, mediante una membrana permeable al agua, una solución acuosa con bajo contenido en sal a partir de otra con alto contenido en sal y que en ningún caso se trata de un proceso de filtración a través de la membrana, como sería el caso de la microfiltración o de la ultrafiltración, sino que el solvente difunde a través de la membrana.
Características del proceso
La técnica de RO ha evolucionado ampliamente en las últimas décadas y ha pasado de ser una tecnología emergente a ser un proceso consolidado, eficiente y competitivo. No obstante, ¿en qué consiste exactamente la ósmosis inversa? Para contestar a esta cuestión, primero analizaremos en qué consiste el proceso de ósmosis.
Teniendo en cuenta estas premisas podemos decir que la ósmosis (O) es una operación de equilibrio en la que moléculas de un solvente son capaces de atravesar una membrana permeable para diluir una solución más concentrada. Si se dispone de un equipo como el de la figura (a) en el que dos soluciones de diferente concentración de sal y que se encuentran a presión atmosférica están separadas por una barrera física, en el momento en que se retira la barrera que las separa, se produce una difusión de forma natural y se igualan las concentraciones de ambas soluciones, momento en el que se llega al equilibrio. Al principio, habrá un flujo que será mayoritario e irá de la solución más diluida a la más concentrada, pero a medida que las concentraciones se vayan igualando, los flujos también se irán emparejando y el flujo neto será cero.
En la figura (b) se dispone del mismo montaje experimental, pero ahora las dos soluciones están separadas por una membrana semipermeable, la cual deja pasar a través suyo el solvente, pero no los iones ni moléculas de mayor tamaño. En este caso se vuelve a producir el fenómeno de la ósmosis, el solvente de la solución más diluida atraviesa la membrana hacia la solución más concentrada.
En cambio, los iones de la solución más concentrada, al no poder atravesar la membrana, quedan confinados. Como resultado de esta transferencia de solvente de un lado al otro de la membrana, en la parte superior de los tanques se observa como el nivel de ambas soluciones ha variado. Mientras que el nivel de la solución más diluida ha disminuido, el nivel de la solución más concentrada ha aumentado.
Una vez el flujo se ha parado – figura (c) – y el nivel de los dos tanques ya no varía más en relación con el tiempo, el sistema ha llegado al equilibrio.
La diferencia de niveles de líquido entre los dos tanques genera una presión hidrostática que equivale exactamente a la presión osmótica. De hecho, la presión osmótica se define como la presión hidrostática necesaria para detener el flujo de solvente a través de una membrana semipermeable que separa dos soluciones de diferente concentración.
Si cuando el solvente está fluyendo de la solución más diluida a la solución más concentrada, con el objetivo de igualar las dos concentraciones, se ejerce una ligera presión en la solución de mayor concentración, el flujo a través de la membrana disminuye.
Si se aumenta paulatinamente la presión ejercida, se llega a un punto en el que el flujo a través de la membrana es cero, es decir, el solvente deja de atravesar la membrana. La presión que se está ejerciendo en ese momento es igual a la presión osmótica. Y si se incrementa la presión ejercida, el flujo se invierte y el solvente atraviesa la membrana en la dirección contraria, es decir, pasa del lado de la solución más concentrada al lado donde se encuentra la solución más diluida. Este proceso recibe el nombre de ósmosis inversa.
Así pues, la ósmosis inversa consiste en separar el solvente de una solución concentrada, que pasa a través de una membrana semipermeable, mediante la aplicación de una presión, la cual deberá ser, como mínimo, superior a la presión osmótica. Cuanto mayor sea la presión aplicada, mayor será el flujo de permeado a través de la membrana.
Este proceso es especialmente atractivo por la elevada selectividad de las membranas, las cuales permiten el paso del solvente, pero apenas pueden pasar los iones y moléculas de pequeño tamaño disueltas en la solución.
Selectividad de la membrana
La ósmosis inversa es una técnica muy eficiente y competitiva para separar un solvente de los solutos que lleva disueltos, puesto que, aplicada al agua, la membrana permite la separación del 95% de las sales disueltas, lo cual permite la desalinización de aguas salobres o de aguas de mar.
Las membranas semipermeables, que dejan pasar selectivamente el solvente e impiden el paso a los solutos, desempeñan un papel clave en el proceso. Las primeras estaban fabricadas con acetato de celulosa, pero después las de poliamida han desplazado a las primeras, al permitir controlar el tamaño de poro y la permeabilidad.
Las membranas son poco permeables a los iones y a las moléculas con cargas electroestáticas; a mayor carga, mayor será la retención. Por el contrario, los gases disueltos (oxigeno, dióxido de carbono, cloro, etc.) tienen una buena permeabilidad, igual que las moléculas orgánicas neutras de bajo peso molecular.
Problemas específicos de ensuciamiento
El factor principal que amenaza la productividad de la membrana es su gradual ensuciamiento.
Este se puede producir por diversos motivos, siendo los más comunes:
- Los depósitos en la superficie de la membrana de escamas o costras de carbonato cálcico, sulfato cálcico, silicatos complejos, sulfato de bario, sulfato de estroncio, fluoruro cálcico, etc., dependiendo de la composición de la alimentación y como consecuencia de que las concentraciones de sal en el concentrado puedan sobrepasar el producto de solubilidad de la sal.
- Los sedimentos de partículas como coloides, productos de la corrosión del hierro de las conducciones, precipitados de hidróxido de hierro, algas, etc.
- El bioensuciamiento debido al crecimiento de microorganismos en la superficie de la membrana, ya que algunos materiales de las membranas, como el acetato de celulosa o las poliamidas, pueden ser un sustrato utilizable por los microorganismos.
- El ensuciamiento debido a compuestos orgánicos como aceites o grasas presenten en las aguas residuales industriales.
La forma de limpieza de las membranas depende de las características del agua de alimentación, del tipo de membrana y de la naturaleza del ensuciamiento. Como pauta general se puede proceder a alternar periodos de enjuagado de las membranas, haciendo circular las soluciones limpiadoras a alta velocidad por la superficie de las membranas, con periodos donde las membranas queden sumergidas en las soluciones limpiadoras.
Los agentes de limpieza habitualmente utilizados son:
- Ácidos clorhídrico, fosfórico o cítrico y agentes quelantes como EDTA, para eliminar las costras de precipitados salinos, y ácido oxálico para eliminar los sedimentos de hierro.
- Álcalis combinados con surfactantes para eliminar microorganismos, sedimentos y compuestos orgánicos
- Esterilización de las membranas con soluciones de cloro para eliminar los microorganismos.
Las sucesivas limpiezas terminan por degradar las membranas. Dependiendo de la aplicación, el periodo de vida garantizado por el fabricante suele ser de 1 – 2 años. Con un buen programa de limpieza la vida de las membranas se puede prolongar hasta 3 años, siendo improbables períodos de vida de 5 años.
Generalmente, para alargar la vida de las membranas se suele pretratar el agua de alimentación. Es habitual que, como pasos previos a la ósmosis inversa, primero se lleve a cabo una filtración y después una ultrafiltración, siempre dependiendo de la cantidad de sólidos en suspensión que lleven las aguas a tratar.
Aplicaciones generales
El objetivo de las plantas de RO instaladas se distribuye de la siguiente forma:
- 50 % en desalinización de agua de mar y agua salobre
- 40 % en la producción de agua ultrapura para las industrias electrónica, farmacéutica y de producción de energía
- 10 % como sistemas de descontaminación de aguas urbanas e industriales.
Desalinización de aguas salobres
La salinidad de este tipo de aguas es de 2000 mg/L – 10000 mg/L. En su tratamiento se utilizan presiones de 14 bar – 21 bar para conseguir coeficientes de rechazo superiores al 90 % y obtener aguas con concentraciones salinas menores de 500 mg/L, que son los valores recomendados por WHO como condición de potabilidad.
Las plantas de tratamiento de aguas salobres utilizan módulos de membranas enrolladas en espiral. Se estima que los costes de capital de este tipo de plantas son del orden de 0.25 $US/L de agua tratada/día, siendo los costes de operación del mismo orden.
Desalinización de agua de mar
Dependiendo de la zona geográfica, la salinidad de este tipo de aguas es de 30000 mg/L – 40000 mg/L. Para conseguir condiciones de potabilidad se utilizan membranas de poliamida de tipo fibra hueca que permiten conseguir coeficientes de rechazo superiores al 99.3 % con presiones de trabajo de 50 bar – 70 bar.
Los costes de operación de este tipo de plantas de tratamiento se estiman en 1 – 1.25$US/L de agua tratada/día, lo que hace que este sistema de tratamiento no sea competitivo, frente a otros sistemas como los procesos de evaporación multietapa, si las necesidades de agua superan los 40000 m3 de agua tratada/día.
Producción de agua ultrapura
La RO permite obtener a partir del agua de consumo (concentración de sólidos disueltos < 200 mg/L) agua de la calidad exigida en la industria electrónica.
El principal problema en este tipo de instalaciones es el bioensuciamiento de las membranas, por lo que es necesaria la instalación de sistemas de esterilización mediante radiación UV.
Tratamiento de aguas residuales
Esta aplicación de la RO está limitada por los altos costes de operación debido a los problemas de ensuciamiento de las membranas.
En el caso de las aguas residuales industriales, la RO se utiliza en aquellas industrias donde es posible mejorar la economía del proceso mediante la recuperación de componentes valiosos que puedan volver a reciclarse en el proceso de producción: industrias de galvanoplástia y de pintura de estructuras metálicas, o donde la reutilización del agua tratada signifique una reducción importante del consumo de agua, como en la industria textil.
En el caso de las aguas urbanas, la RO es un tratamiento que estaría indicado como tratamiento terciario, siendo posible obtener agua con una calidad que la hiciese apta para el consumo, con un coste de 0.5 – 0.75 $US/m3.
El principal problema para la consolidación de este tipo de tratamiento es la contestación social. Sin embargo, en zonas de Japón y California, donde existen limitaciones extremas de agua, se están utilizando plantas de RO para tratar el agua procedente del tratamiento biológico de las aguas domésticas, empleándose el agua tratada por RO para la recarga de acuíferos.
Aplicaciones industriales
Las aplicaciones industriales de esta tecnología son tan variadas como indispensables. Entre los usos y aplicaciones más utilizadas se encuentran las siguientes:
Industria alimentaria, farmacéutica y similares
En las industrias alimentaria, farmacéutica, médica, cosmética, química, electrónica, biotecnológica, etc. se utiliza agua osmotizada puesto que en una gran variedad de procesos se precisa agua de gran calidad si no agua ultrapura. El agua osmotizada es el punto de partido para la obtención de agua ultrapura.
Industria productora de agua para consumo humano
En muchos lugares del planeta no existe suficiente agua dulce o con la calidad necesaria para poder abastecer a la población.
Tanto si el problema es de calidad (aguas salobres, aguas contaminadas con nitratos, metales, pesticidas, etc.) como de cantidad (se recurre a la desalinización de agua de mar) la opción más económica para la obtención de agua apta para el consumo humano es la ósmosis inversa.
Reutilización de aguas residuales
Existen numerosos casos en los que los efluentes de los procesos de tratamiento de las aguas residuales deben ser tratados para mejorar su calidad hasta que puedan ser reutilizados.
Es el caso de aquellos procesos en los que se consume un gran caudal de agua, como en la industria textil, o cuando se vierte el efluente al medio natural para recargar un acuífero.
También es el caso de los procesos en los que se persigue no generar ningún vertido líquido (vertido cero) y la totalidad de los efluentes son tratados y recuperados para ser utilizados de nuevo.
Todas las áreas mencionadas para el uso de la ósmosis inversa y sus aplicaciones son cubiertas por Condorchem Envitech.